Noncatalytic Inhibition of Cyclic Nucleotide–gated Channels by Tyrosine Kinase Induced by Genistein

نویسندگان

  • Elena Molokanova
  • Alexei Savchenko
  • Richard H. Kramer
چکیده

Rod photoreceptor cyclic nucleotide-gated (CNG) channels are modulated by tyrosine phosphorylation. Rod CNG channels expressed in Xenopus oocytes are associated with constitutively active protein tyrosine kinases (PTKs) and protein tyrosine phosphatases that decrease and increase, respectively, the apparent affinity of the channels for cGMP. Here, we examine the effects of genistein, a competitive inhibitor of the ATP binding site, on PTKs. Like other PTK inhibitors (lavendustin A and erbstatin), cytoplasmic application of genistein prevents changes in the cGMP sensitivity that are attributable to tyrosine phosphorylation of the CNG channels. However, unlike these other inhibitors, genistein also slows the activation kinetics and reduces the maximal current through CNG channels at saturating cGMP. These effects occur in the absence of ATP, indicating that they do not involve inhibition of a phosphorylation event, but rather involve an allosteric effect of genistein on CNG channel gating. This could result from direct binding of genistein to the channel; however, the time course of inhibition is surprisingly slow (>30 s), raising the possibility that genistein exerts its effects indirectly. In support of this hypothesis, we find that ligands that selectively bind to PTKs without directly binding to the CNG channel can nonetheless decrease the effect of genistein. Thus, ATP and a nonhydrolyzable ATP derivative competitively inhibit the effect of genistein on the channel. Moreover, erbstatin, an inhibitor of PTKs, can noncompetitively inhibit the effect of genistein. Taken together, these results suggest that in addition to inhibiting tyrosine phosphorylation of the rod CNG channel catalyzed by PTKs, genistein triggers a noncatalytic interaction between the PTK and the channel that allosterically inhibits gating.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactions of Cyclic Nucleotide-Gated Channel Subunits and Protein Tyrosine Kinase Probed with Genistein

The cGMP sensitivity of cyclic nucleotide-gated (CNG) channels can be modulated by changes in phosphorylation catalyzed by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases. Previously, we used genistein, a PTK inhibitor, to probe the interaction between PTKs and homomeric channels comprised of alpha subunits (RETalpha) of rod photoreceptor CNG channels expressed in Xenopus oocy...

متن کامل

Mechanism of Inhibition of Cyclic Nucleotide–Gated Channel by Protein Tyrosine Kinase Probed with Genistein

Rod cyclic nucleotide-gated (CNG) channels are modulated by changes in tyrosine phosphorylation catalyzed by protein tyrosine kinases (PTKs) and phosphatases (PTPs). We used genistein, a PTK inhibitor, to probe the interaction between the channel and PTKs. Previously, we found that in addition to inhibiting tyrosine phosphorylation of the rod CNG channel alpha-subunit (RETalpha), genistein trig...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

A novel mechanism of modulation of hyperpolarization-activated cyclic nucleotide-gated channels by Src kinase.

Hyperpolarization-activated cyclic nucleotide-gated channels (HCN1-4) play a crucial role in the regulation of cell excitability. Importantly, they contribute to spontaneous rhythmic activity in brain and heart. HCN channels are principally activated by membrane hyperpolarization and binding of cAMP. Here, we identify tyrosine phosphorylation by Src kinase as another mechanism affecting channel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 113  شماره 

صفحات  -

تاریخ انتشار 1999